The Group C2v (a1) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Silviu Radu did most of the analysis of the 65536 different cubes of this subgroup. Here the the table with the distances, the average distance is 16.98:
Up to M-symmetry there are 15552 cubes which exactly have this symmetry. All but 39 cubes up to M-symmetry can be solved with less than 20 moves. 26 of the 20-move antipodes are selfinverse, for the other 13 cubes a point reflection at the cube center gives the inverse cubes. The 39 antipodes and six other examples are listed below. The next table gives the number of cubes up to M-symmetry which exactly have C2v (a1)-symmetry, the average maneuver length is 17.01 now:
If you are interested in a list of all optimal maneuvers, they are included in the file C2va1.zip.The 20 move maneuvers for the 39 cubes up to M-symmetry and M-antisymmetry are also included in the file 20moves.zip. Some examples are given below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 Herbert Kociemba |