##
The Group C |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Silviu Radu did most of the analysis of the 1,179,648 different cubes of this subgroup. Here the the table with the distances, the average distance is 17.68:
Up to M-symmetry there are 290880 cubes which exactly have this symmetry. All but 646 cubes up to M-symmetry can be solved with less than 20 moves. From these 646 cubes, 244 have antisymmetry. The next table gives the number of cubes up to M-symmetry which exactly
have C
If you are interested in a list of all optimal maneuvers, they are included
in the file C2va2.zip.The
20 move maneuvers for the 445 cubes up to M-symmetry Below are some examples of cubes with this kind of symmetry. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

© 2017 |