The Group C2v (b)

Silviu Radu did most of the analysis of the 98304 different cubes of this subgroup.

Up to M-symmetry there are 48128 cubes which exactly have this symmetry. All cubes can be solved within 20 moves. There are 94 cubes up to M-symmetry, which need 20 moves. All except 2 of these cubes are antisymmetric (that is the inverse is M-symmetric to the cube itself).

The next table gives the number of cubes up to M-symmetry which exactly have C2v (b)-symmetry, the average maneuver length is 17.59:

Distance
Number
Distance
Number
0f
0
11f
58
1f
0
12f
183
2f
0
13f
293
3f
0
14f
671
4f
0
15f
1,491
5f
0
16f
4,381
6f
3
17f
10,329
7f
1
18f
20,873
8f
3
19f
9,696
9f
18
20f
94
10f
34

If you are interested in a list of all optimal maneuvers, they are included in the file C2vb.zip.The 20 move maneuvers for the 93 cubes up to M-symmetry and M-antisymmetry are also included in the file 20moves.zip. A few other nice examples are listed below.

Name
shortest maneuver with exactly this symmetry
Generator
B2 R2 B2 R2 B2 R2 (6f*)
Name
Generator
L2 B2 L2 U L2 D' R2 F2 R2 D' B2 U (12f*)
Name
Generator
U R B F L2 B' F' R' U' (9f*)
Name
Generator
L B U B2 F2 D' B' R' U B2 R2 D U F2 U' (15f*)
Name
Generator
D' L2 D U L2 U' (6f*)
Name
Generator
R' B' D2 F D F' U F' D U2 B U2 R D' F2 D R2 U' (18f*)
Name
Generator
L R2 D2 L R U2 F' U' F U' F R2 D B U' L2 B R' (18f*)
Name
Generator
B2 D' U' B2 L2 U' R F' U F2 U' F L2 R' U2 (15f*)
Name
Generator
L2 B' L2 R2 D2 B' L' D F2 U' R' F' L D F' U F' U' (18f*)
Name
Generator
F2 D' U F' D' L' U B2 D U' B L R2 B L F' (16f*)
Name
Generator
U2 R2 F2 U B2 F2 D U2 B2 R2 D' U' (12f*)
Name
Generator
L F2 R F' L R2 B U' R D B' L' F D' L' F' (16f*)

Cube display with AnimCubeJS

© 2017  Herbert Kociemba