The Group C2v (b) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Silviu Radu did most of the analysis of the 98304 different cubes of this subgroup. Up to M-symmetry there are 48128 cubes which exactly have this symmetry. All cubes can be solved within 20 moves. There are 94 cubes up to M-symmetry, which need 20 moves. All except 2 of these cubes are antisymmetric (that is the inverse is M-symmetric to the cube itself). The next table gives the number of cubes up to M-symmetry which exactly have C2v (b)-symmetry, the average maneuver length is 17.59:
If you are interested in a list of all optimal maneuvers, they are included in the file C2vb.zip.The 20 move maneuvers for the 93 cubes up to M-symmetry and M-antisymmetry are also included in the file 20moves.zip. A few other nice examples are listed below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 Herbert Kociemba |