The Group C4

Silviu Radu did most of the analysis of the 147456 different cubes of this subgroup. Here the the table with the distances, the average distance is 16.95:

Distance
Number
Distance
Number
0f
1
11f
758
1f
6
12f
1,720
2f
9
13f
2,604
3f
0
14f
4,040
4f
1
15f
9,401
5f
12
16f
21,803
6f
50
17f
46,296
7f
42
18f
48,801
8f
56
19f
11,413
9f
33
20f
222
10f
188

Up to M-symmetry there are 36160 cubes which exactly have this symmetry. All but 39 cubes up to M-symmetry can be solved with less than 20 moves. 35 out of these 39 cubes have antisymmetry. All antipodes of this class are listed below, together with a few nice examples of this class.

The next table gives the number of cubes up to M-symmetry which exactly have C4-symmetry, the average maneuver length is 16.97 now:

Distance
Number
Distance
Number
0f
0
11f
177
1f
1
12f
381
2f
1
13f
583
3f
0
14f
958
4f
0
15f
2,302
5f
2
16f
5,362
6f
8
17f
11,461
7f
7
18f
12,066
8f
7
19f
2,756
9f
7
20f
39
10f
42

If you are interested in a list of all optimal maneuvers, they are included in the file C4.zip.The 20 move maneuvers for the 37 cubes up to M-symmetry and M-antisymmetry are included in the file 20moves.zip.

Name
shortest maneuver with exactly this symmetry
Generator
D (1f*)
Name
Generator
F L' U2 B' R' D B U2 L F U' R' U (13f*)
Name
Generator
B2 F2 L2 R2 D B2 F2 L2 R2 (9f*)
Name
Generator
R2 U2 B' F D2 U2 L' F2 D' U L2 B' D2 B2 L R' U' (17f*)
Name
Generator
F R' B' D2 L' U' F L D2 B D R' (12f*)
Name
 
Generator
D B2 D' L2 U L' U F L F U' R' B2 D B U B F' D R' (20f*)
Name
Generator
B2 F2 U L2 B2 L R B L2 U' B L2 D' U' B' F' D2 U' B R2 (20f*)

Cube display with AnimCubeJS

© 2017  Herbert Kociemba