The Group C4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Silviu Radu did most of the analysis of the 147456 different cubes of this subgroup. Here the the table with the distances, the average distance is 16.95:
Up to M-symmetry there are 36160 cubes which exactly have this symmetry. All but 39 cubes up to M-symmetry can be solved with less than 20 moves. 35 out of these 39 cubes have antisymmetry. All antipodes of this class are listed below, together with a few nice examples of this class. The next table gives the number of cubes up to M-symmetry which exactly have C4-symmetry, the average maneuver length is 16.97 now:
If you are interested in a list of all optimal maneuvers, they are included in the file C4.zip.The 20 move maneuvers for the 37 cubes up to M-symmetry and M-antisymmetry are included in the file 20moves.zip. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 Herbert Kociemba |