|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
With the help of GAP and methods similar to the methods used in Cube Explorer to find optimal maneuvers, Silviu Radu managed in a very ingenious way to do a complete analysis of the 45,864,714,240 different cubes . Here the the table with the distances, the average distance is 17.86:
Up to M-symmetry there are 1,910,931,706 cubes which exactly have the symmetry of this subgroup. All of them can be solved within 20 moves, 10540 up to M-symmetry need exactly 20 moves. Up to M-symmetry and M-antisymmetry it are 7188 20f*-cubes, which are included in the file 20moves.zip. Below are some nice examples for cubes, which exactly have Ci symmetry. The next table gives the number of cubes up to M-symmetry which exactly have Ci-symmetry. To compute this number we used the following identity, where CiTotal is the table above and the right side hold the tables for the number of cubes mod M with exactly the symmetry of the subgroups of Ci, which are all known except for Ci itself. CiTotal = 24 Ci+ 12 C2h (b)
+ 12 C2h (a) + 6 D2h(face) + 6 D2h (edge)
+ 6 C4h + The average maneuver length also is 17.86:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 |