The Group Cs (b)

Silviu Radu managed to do a complete analysis of the 424,673,280 different cubes of this subgroup.Here the the table with the distances, the average distance is 17.71:

Distance
Number
Distance
Number
0f
1
11f
6,478
1f
2
12f
25,130
2f
1
13f
114,700
3f
0
14f
546,558
4f
1
15f
3,102,247
5f
4
16f
19,703,503
6f
24
17f
110,503,448
7f
50
18f
252,385,203
8f
126
19f
38,279,025
9f
533
20f
4,290
10f
1,956

Up to M-symmetry there are 106,103,792 cubes which exactly have this symmetry and 948 of these cubes need 20 moves. All other cubes can be solved in 19 moves or less. 778 out of these 948 cubes with 20 moves have antisymmetry. Up to M-symmetry and M-antisymmetry it are 863 20f*-cubes, which are included in the file 20moves.zip. We display only some nicer examples of this symmetry class here.

The next table gives the number of cubes up to M-symmetry which exactly have Cs (b)-symmetry. To compute this number we used the following identity, where Cs (b)Total is the table above and the right side hold the tables for the number of cubes mod M with exactly the symmetry of the subgroups of C(b), which are all known except for C(b) itself.

C(b)Total = 4 C(b) + 2 C2h (b) + 2 C2v (b) + 4 C2v (a1) + 2 D2h (edge) + 2 D2d (face) + 2C4v + D4h + 4 C3v+ 2 D3d + Oh

The average maneuver length also is 17.71:

Distance
Number
Distance
Number
0f
0
11f
1,439
1f
0
12f
5,906
2f
0
13f
28,154
3f
0
14f
135,189
4f
0
15f
772,641
5f
0
16f
4,919,061
6f
3
17f
27,611,515
7f
9
18f
63,069,968
8f
20
19f
9,558,403
9f
117
20f
948
10f
419
Name
shortest maneuver with exactly this symmetry
Generator
U B2 U D B2 D' (6f*)
Name
Generator
B2 R D R' F2 R2 B' R' B' L2 R B' U2 B2 U' R' (16f*)
Name
Generator
D' B F' R D U' B2 R2 D2 U2 F' L R' D R2 U2 (16f*)
Name
Generator
L' B L' B2 F R D' B U R' F' L U' F2 (14f*)
Name
Generator
L B2 D L' F' R D R B2 F' L2 U B2 U R2 (15f*)
Name
Generator
L F U' F U2 L' R2 B' U B L2 R2 U L2 D' U2 (16f*)
Name
Generator
B' R' U R' U2 B' R D' L2 R D' F2 U L2 R2 U2 (16f*)
Name
Generator
F' L' F2 L2 B2 D' U B L' R D L2 D U2 R (15f*)
Name
Generator
U' L2 D L' R F' R2 F2 D' U L' B' F L2 R2 (15f*)
Name
Generator
U B2 D2 F' R U B2 F2 D' L' F D2 F2 U' (14f*)
Name
Generator
U' F2 U' B' F R F2 L2 D' U F L R' U2 (14f*)

Cube display with AnimCubeJS

© 2017  Herbert Kociemba