|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Silviu Radu did the analysis of the 294912 different cubes of this subgroup for the cubes with distance less than 20. Here the the table with the distances, the average distance is 15.69, what is quite low:
Up to M-symmetry there are 23356 cubes which exactly have this symmetry. All cubes can be solved within 20 moves and there are only 4 cubes up to M-symmetry which need 20 moves. It is interesting to observe that all 4 cubes have an antisymmetry defined by the complement of D2 (face) in D2h(face). They are displayed below, together with a few other examples of this class. The next table gives the number of cubes up to M-symmetry which exactly have D2 (face)-symmetry, the average maneuver length is 15.67 now:
If you are interested in a list of all optimal maneuvers, they are included in the file D2f.zip. The four 20f*-maneuvers also are included in the file 20moves.zip. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 |