The Group S4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Silviu Radu did most of the analysis of the 442368 different cubes of this subgroup. Here the the table with the distances, the average distance is 17.31:
Up to M-symmetry there are109376 cubes which exactly have this symmetry. All but 82 cubes up to M-symmetry can be solved with less than 20 moves. 68 out of these 82 cubes with 20 moves have antisymmetry. We display only some nicer examples of this symmetry class here. The next table gives the number of cubes up to M-symmetry which exactly have S4-symmetry, the average maneuver length is 17.32 now:
If you are interested in a list of all optimal maneuvers for this subgroup, they are included in the file S4.zip. The 75 20f*-maneuvers up to M-symmetry and M-antisymmetry are also included in the file 20moves.zip. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cube display with AnimCubeJS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2017 Herbert Kociemba |