We know God's algorithm
for all the 164,604,041,664 symmetric cubes which exist. The following
table gives the distribution:
Distance |
Number |
Distance |
Number |
0f |
1 |
11f |
9,732,164 |
1f |
18 |
12f |
35,024,904 |
2f |
51 |
13f |
122,054,340 |
3f |
312 |
14f |
436,197,214 |
4f |
1,335 |
15f |
1,763,452,505 |
5f |
4,380 |
16f |
8,035,307,127 |
6f |
17,782 |
17f |
37,542,012,922 |
7f |
70,188 |
18f |
95,387,902,305 |
8f |
229,336 |
19f |
21,267,102,443 |
9f |
851,139 |
20f |
1,091,994 |
10f |
2,989,204 |
21f |
0 |
Reducing the 1,091,994 symmetric cubes with 20 moves by symmetry and
antisymmetry we find exactly 32,625 essentially different symmetric cubes
which need 20 moves to be solved. They are included in the file 20moves.zip.
The details for the different symmetry types can be found below. |
Type |
Schoenflies-Symbol |
Number of
Symmetries |
Number of
cubes having at least this symmetry |
Shortest
generator for exactly this symmetry |
More
Information |
|
Oh |
48 |
4 |
do nothing |
|
|
O |
24 |
4 |
--- |
|
|
Td |
24 |
4 |
--- |
|
|
Th |
24 |
24 |
U2 L2 F2 D2 U2 F2 R2 U2 |
|
|
T |
12 |
72 |
B F L R B' F' D' U' L R D U |
|
|
D3d |
12 |
16 |
U L D U L' D' U' R B2 U2 B2 L' R' U' |
|
|
C3v |
6 |
48 |
U L' R' B2 U' R2 B L2 D' F2 L' R' U' |
|
|
D3 |
6 |
432 |
D B D U2 B2 F2 L2 R2 U' F U |
|
|
S6 |
6 |
7776 |
B' D' U L' R B' F U |
|
|
C3 |
3 |
3,779,136 |
L' R U2 R2 D2 F2 L R D2 |
|
|
D4h |
16 |
128 |
U2 D2 |
|
|
D4 |
8 |
512 |
U D |
|
|
C4v |
8 |
1024 |
D2 |
|
|
C4h |
8 |
1536 |
U D' |
|
|
C4 |
4 |
147456 |
|
|
|
S4 |
4 |
442368 |
U R2 L2 U2 R2 L2 D |
|
|
D2d (edge) |
8 |
3072 |
U F2 B2 D2 F2 B2 U |
|
|
D2d (face) |
8 |
512 |
U R L F2 B2 R' L' U |
|
|
D2h (edge) |
8 |
2048 |
U R2 L2 D2 F2 B2 U |
|
|
D2h(face) |
8 |
12288 |
B2 D2 U2 F2 |
|
|
D2 (edge) |
4 |
98304 |
U F2 U2 D2 F2 D |
|
|
D2 (face) |
4 |
294912 |
R2 L2 F B |
|
|
C2v (a1) |
4 |
65536 |
U R2 L2 U2 F2 B2 U' |
|
|
C2v (a2) |
4 |
1,179,648 |
R2 L2 U2 |
|
|
C2v (b) |
4 |
98304 |
B2 R2 B2 R2 B2 R2 |
|
|
C2h (a) |
4 |
589824 |
U' D F2 B2 |
|
|
C2h (b) |
4 |
98304 |
U R2 U D R2 D |
|
|
C2 (a) |
2 |
15,288,238,080 |
L R U2 |
|
|
C2 (b) |
2 |
2,548,039,680 |
U R2 D' U' R2 U' |
|
|
Cs (a) |
2 |
18,345,885,696 |
F2 R2 |
|
|
Cs (b) |
2 |
424,673,280 |
U B2 U D B2 D' |
|
|
Ci |
2 |
45,864,714,240 |
U D' R L' |
|
|
C1 |
1 |
43,252,003,274,489,856,000 |
U R |
|
|